Sharp diameter bound on the spectral gap for quantum graphs

نویسندگان

چکیده

We establish an upper bound on the spectral gap for compact quantum graphs which depends only diameter and total number of vertices. This is asymptotically sharp pumpkin chains with edges tending to infinity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

The Sharp Lower Bound for the Spectral Radius of Connected Graphs with the Independence Number

In this paper, we investigate some properties of the Perron vector of connected graphs. These results are used to characterize all extremal connected graphs which attain the minimum value among the spectral radii of all connected graphs with order n = kα and the independence number α. Moreover, all extremal graphs which attain the maximum value among the spectral radii of clique trees with orde...

متن کامل

A sharp upper bound on the spectral radius of weighted graphs

We consider weighted graphs, where the edgeweights are positive definite matrices. The eigenvalues of a graph are the eigenvalues of its adjacency matrix. We obtain an upper bound on the spectral radius of the adjacency matrix and characterize graphs for which the bound is attained. © 2007 Elsevier B.V. All rights reserved.

متن کامل

On the spectral gap in Andreev graphs

We introduce Andreev scattering (electron-hole conversion at an interface of a normal conductor to a superconductor) at the outer vertices of a quantum star graph and examine its effect on the spectrum. More specifically we show that the density of states in Andreev graphs is suppressed near the Fermi energy where a spectral gap may occur. The size and existence of such a gap depends on one sid...

متن کامل

A Sharp Upper Bound for the Lattice Programming Gap

Given a full-dimensional lattice Λ ⊂ Z and a vector l ∈ Qd>0, we consider the family of the lattice problems Minimize {l · x : x ≡ r(mod Λ),x ∈ Zd≥0} , r ∈ Z d . (0.1) The lattice programming gap gap(Λ, l) is the largest value of the minima in (0.1) as r varies over Z. We obtain a sharp upper bound for gap(Λ, l).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15090